653 research outputs found

    MaimAir: A flexible and modular energy storage system for tomorrow energy banks

    Get PDF
    We considered a novel energy storage system based on the compression of air through pumped water. Differently from CAES on trial, the proposed indirect compression leaves the opportunity to choose the kind of compression from adiabatic to isothermal. The energy storage process could be both fast or slow leading to different configuration and applications. These novel storage system are modular and could be applied in different scales for different locations and applications, being very flexible in charge and discharge process. The system may offer an ideal energy buffer for wind and solar storage with no (or negligible) environment hazard. The main features of this novel energy storage system will be showed together with overall energy and power data. Despite CAES technology has already started being exploited, a lot of improvement is possible. In traditional CAES, compression of air takes place in the compressor, that is then moved to the storage vessel. Similarly, air is taken from the vessel and introduced in turbine for expansion. In the proposed system, air is compressed and expands directly in the storage vessel. This is done through a water piston that modifies air volume, reducing it during charge and increasing it during discharge. The water piston is used as heat storage so to absorb heat during compression and reject it during expansion, too. The new system is thus a Hydraulic compressed air energy storage (HYCAES). It is composed of high pressure storage vessel, almost full of air when fully out of power, an atmospheric pond for water storage, a water pump and a hydraulic turbine and connecting pipes. It is not ever-new, as there are some papers illustrating similar systems . In present paper, thermodynamic aspects of proposed systems will be analyzed to prove its energy feasibilit

    Dynamic thermal features of insulated blocks: Actual behavior and myths

    Get PDF
    The latest updates in the European directive on energy performance of buildings have introduced the fundamental “nearly zero-energy building (NZEB)” concept. Thus, a special focus needs to be addressed to the thermal performance of building envelopes, especially concerning the role played by thermal inertia in the energy requirements for cooling applications. In fact, a high thermal inertia of the outer walls results in a mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. The common assumption that high mass means high thermal inertia typically leads to the use of high-mass blocks. Numerical and experimental studies on thermal inertia of hollow envelope components have not confirmed this general assumption, even though no systematic analysis is readily available in the open literature. Yet, the usually employed methods for the calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed of homogeneous layers. In this framework, a study of the dynamic thermal performance of insulated blocks is brought forth in the present paper. A finite-volume method is used to solve the two-dimensional equation of conduction heat transfer, using a triangular-pulse temperature excitation to analyze the heat flux response. The effects of both the type of clay and the insulating filler are investigated and discussed at length. The results obtained show that the wall front mass is not the basic independent variable, since clay and insulating filler thermal diffusivities are more important controlling parameters

    Buoyancy-induced convection of water-based nanofluids in differentially-heated horizontal Semi-Annuli

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in differentially- heated horizontal semi-annuli, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Numerical simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, the cavity size, the average temperature, and the temperature difference imposed across the cavity, as independent variables. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas, by contrast, the other controlling parameters have moderate effects. Moreover, at temperatures of the order of room temperature or just higher, the heat transfer performance of the nanofluid is significantly affected by the choice of the solid phase material

    Natural convection of water near 4°C in a bottom-cooled enclosure

    Get PDF
    A study of natural convection in water-filled square enclosures whose bottom wall is cooled at 0°C, whereas the top wall is partially or entirely heated at a temperature ranging between 10°C and 30°C is performed numerically through a computational code based on the SIMPLE-C algorithm, assuming temperature-dependent physical properties, for cavity widths in the range 1 cm-10 cm, with the main aim to point out the basic heat and momentum transfer features

    Natural convection from a pair of differentially-heated horizontal cylinders aligned side by side in a nanofluid-filled square enclosure

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection from a pair of differentially-heated horizontal cylinders set side by side in a nanofluid-filled adiabatic square enclosure. The study is conducted under the assumption that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, as well as the cavity width, the inter-cylinder spacing, the average temperature of the nanofluid, and the temperature difference imposed between the cylinders, as controlling parameters, whose effects are thoroughly analyzed and discussed. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas it increases just moderately as the nanoparticle size decreases, as well as the imposed temperature difference and the cavity width increase. Conversely, the distance between the cylinders seems to have marginal effects. Moreover, an optimal particle loading for maximum heat transfer is detected for most configurations investigated

    Buoyancy-induced convection of water-based nanofluids in differentially-heated horizontal Semi-Annuli

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in differentially- heated horizontal semi-annuli, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Numerical simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, the cavity size, the average temperature, and the temperature difference imposed across the cavity, as independent variables. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas, by contrast, the other controlling parameters have moderate effects. Moreover, at temperatures of the order of room temperature or just higher, the heat transfer performance of the nanofluid is significantly affected by the choice of the solid phase material

    Definition of parameters useful to describe dynamic thermal behavior of hollow bricks

    Get PDF
    Dynamic thermal behavior of hollow bricks is attracting much interest nowadays as there is much concern on energy performance of building envelope. In fact, high thermal inertia of outer walls provides mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. Different approaches have been used to study dynamic thermal behavior within the papers available on unsteady heat transfer through hollow bricks. Actually, the usually employed methods for calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed by homogeneous layers, so they are not suitable for many common building components. In this framework, a study on the dynamic thermal performance of hollow bricks is brought forth in the present paper. A critical review of available data from the literature is provided. Literature data are used to propose a parameter useful to predict dynamic thermal behavior. A finite-volume method is used to solve two-dimensional unsteady thermal fields in some standard bricks with different imposed temperature solicitations, with a numerical code developed by the authors. New results are used to check the effectiveness of the proposed parameters

    Thermal inertia of hollow wall blocks: actual behavior and myths

    Get PDF
    In the context of growing requirements to save energy in buildings and high objectives for Net Zero Energy Buildings (NZEBs) in Europe, strong emphasis is placed on the thermal performance of building envelopes, and in particular on thermal inertia to save cooling energy. High thermal inertia of outer walls leads to a mitigation of the daily heat wave, reducing cooling peak load and energy demand. Moreover, building envelopes with high heat capacity act as heat storages, increasing the effectiveness of natural ventilation for thermal comfort through a night-day energy shifting. Even though there are some papers available in the open literature on dynamic heat transfer through hollow bricks, yet common calculation methods are applicable to homogeneous layers only. That is the case of ISO 13786 regulation "Thermal performance of building components - Dynamic thermal characteristics - Calculation methods", for example. On the other hand, hollow blocks are very commonly used in building envelopes. Thus, available methods are not suitable for prediction of dynamic thermal performances. On the other hand, the widely common assumption that high mass means high thermal inertia leads to the use of higher mass blocks or bricks. Yet, numerical and experimental studies on thermal inertia of hollow envelope-components have not confirmed this general assumption, even though no systematic analysis has been found in the open literature. In this framework, numerical simulations of the thermal performance of hollow bricks have been done with a specifically-developed finite-difference computational code. Three common basic shapes with different void fraction and thermal properties have been analyzed with a triangular pulse solicitation, in order to highlight the relevance of front mass and other parameters on the thermal inertia, measured through heat wave delay. Results show that wall front mass is often misleading as thickness, number of cavities and clay thermal diffusivity are more important

    Comparison between 1-D and grey-box models of a SOFC

    Get PDF
    Solid Oxide Fuel Cells (SOFCs) have shown unique performance in terms of greater electrical efficiency and thermochemical integrity with the power systems compared to gas turbines and internal combustion engines. Nonetheless, simple and reliable models still must be defined. In this paper, a comparison between a grey-box model and a 1-D model of a SOFC is performed to understand the impact of the heat transfer inside the cell on the internal temperature distribution of the solid electrolyte. Hence, a significant internal temperature peak of the solid electrolyte is observed for a known difference between anode and cathode inlet temperatures. Indeed, it highlights the difference between the 1-D model and the grey-box model regarding the thermal conditioning of the SOFC. Therefore, the results of this study can be used to investigate the reliability of the thermal results of box models in system-level simulations
    • …
    corecore